
SWEN 262
Engineering of Software Subsystems

Similar Dependencies

● You are updating some code that stores customer data in a database.
● The code currently uses a library to connect to a MySQL database.
● Many of your customers have requested that your application also support

PostgreSQL, Oracle, and SQL Server
○ Each database provides a library with essentially identical functionality but slightly

different APIs.

Q: What is the best way to update the code
to support all of the required databases? Is
there a way to do it so that other databases
are easy to add in the future?

Conditionals

public void dbMethod() {
 switch(dbType) {
 case MY_SQL:
 // MySQL-specific code
 case POSTGRESQL:
 // PostgreSQL-specific code
 case ORACLE:
 // Oracle-specific code
 case SQL_SERVER:
 // SQL Server-specific code
 }
}

A: Create a single, long method and use a
type code to determine which API to use to
connect to the database.

Q: What are the drawbacks to this
approach?

A: Every time a new database is needed,
the application has to change (violates
OCP).

A: This solution also suffers from a lack of
cohesion (tries to know about and do too
many things).

A: This also creates a significant amount of
coupling between this class, the database
APIs, and any class that needs to use the
database.

Subclassing

Application

concreteMethod()
dbMethod()

A: Create an application class that abstracts
any behavior that interacts with a database
(e.g. to store or load customer data).

MySQLApp

dbMethod()

PostgreSQLApp

dbMethod()

OracleApp

dbMethod()

SQLServerApp

dbMethod()

Then create different subclasses, one for
each type of database that needs to be
supported.

Q: What are the potential drawbacks to this
approach?

A Layer of Abstraction

Application

concreteMethod()

DatabaseAdapter

dbMethod()

MySQLAdapter

dbMethod()

MySQLAPI

methodA()

mySQL.methodA()

A: Create a layer of abstraction in
between the application and the
database specific API by defining an
adapter as an interface.

The application aggregates an instance
of the DatabaseAdapter interface, and
uses it whenever it needs to use the
database.

An application specific implementation
of the interface is written for the
application to use to connect to
MySQL.

Whenever the dbMethod() is called on
the MySQLAdapter, it adapts the call to
the MySQL API.

All of the platform-specific code is kept
within the MySQLAdapter and out of
the Application.

A Layer of Abstraction

Application

concreteMethod()

DatabaseAdapter

dbMethod()

MySQLAdapter

dbMethod()

MySQLAPI

methodA()

mySQL.methodA()

PostgreSQLAdapter

dbMethod()

PostgreSQLAPI

methodB()

psql.methodB()

It’s also easy to add support for new
databases by creating platform-specific
implementations of the
DatabaseAdapter for each.

The application can be configured to
connect to a different database simply
by swapping one adapter
implementation for another.

No code changes are required.

Adapter (Object)

Target

Request()

Adapter

Request() adaptee.SpecificRequest()

Intent
Convert the interface of a class into another interface
clients expect. Adapter lets classes work together that
couldn’t otherwise because of incompatible interfaces.

(Structural)

Client Adaptee

SpecificRequest()

In this variation, the Adapter
aggregates an instance of the Adaptee.
When the Request() method is called, it
is translated to the SpecificRequest()
on the Adaptee.

Adapter (Class)

Target

Request()

Adapter

Request() SpecificRequest()

Intent
Convert the interface of a class into another interface
clients expect. Adapter lets classes work together that
couldn’t otherwise because of incompatible interfaces.

(Structural)

Client Adaptee

SpecificRequest()

In this variation, the Adapter uses
multiple inheritance to both implement
the Target interface and extend the
Adaptee. When the Request() method
is called, the Adapter calls the
SpecificRquest() on itself.

Consequences

Class Adapters
● since adapter is a subclass, it can override some of adaptee’s behavior.
● introduces only one new object (per adaptee)
● a class adapter won’t work when we want to adapt a class and its

subclasses.
Object Adapters
● lets a single adapter work with many adaptees; that is the adaptee itself

and all of its subclasses.
● makes it harder to override adaptee behavior.

